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Abstract. We provide an account of the current state of knowledge concerning
diophantine problems in many variables, paying attention in particular to the fun-
damental role played by additive number theory in establishing a large part of this
body of knowledge. We describe recent explicit versions of the theorems of Brauer
and Birch concerning the solubility of systems of forms in many variables, and estab-
lish an explicit version of Birch’s Theorem in algebraic extensions of Q. Finally, we
consider the implications of recent progress on explicit versions of Brauer’s Theorem
for problems concerning the solubility of systems of forms in solvable extensions, such
as Hilbert’s resolvant problem.

1. Introduction

The purpose of this paper is to provide an overview of the current state of knowl-
edge concerning diophantine problems in many variables, and in particular to de-
scribe the fundamental role played by additive number theory in establishing a
great part of this body of knowledge. Diophantine problems in few variables have
attracted the enthusiastic attention of number theorists for millenia, and indeed the
recent work of Wiles [81] concerning Fermat’s Last Theorem has even attracted the
attention of the mass media. Exercising considerable literary hyperbole, one might
describe the current state of knowledge concerning diophantine problems as resem-
bling the European view of the world towards the end of the 16th Century. Thus,
while a scientific renaissance flourished within Europe itself, knowledge concerning
much of the globe consisted of little more than wild speculation based on the ex-
otic tales brought back by adventurous explorers. In a similar fashion, the past
half century has delivered a remarkable level of understanding of the arithmetic of
curves, and this in turn has provided reasonably satisfactory knowledge concerning
the solubility of diophantine equations in 2 or 3 variables. In contrast, the solu-
bility of diophantine equations in many variables is a wild frontier with, for the
most part, only sketchy knowledge and speculative conjectures. Hopefully, rather
than be deterred by the relative lack of knowledge in the latter area, readers will
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be tempted by the ripping yarns recounted herein to themselves become explorers
of this vast untamed territory.

Before proceeding further we pause to more carefully describe the type of dio-
phantine problems central to this paper. Usually we will be interested in the solu-
bility of a system of polynomial equations or inequalities over the rational integers
Z or field of rational numbers Q, but sometimes we will consider such problems over
more general fields. As intimated above, one may loosely divide such diophantine
problems into two types.

(i) Diophantine problems in few variables. Consider a homogeneous polyno-
mial p(x) ∈ Z[x1, x2, x3] of degree d. When d is large, one might expect there to be
few, if any, primitive solutions of the equation p(x) = 0 with x ∈ Z3 \ {0}, for the
values taken by the polynomial p(x) are naively expected to be sparse amongst the
set of all integers. The corresponding set of complex zeros of p(x) may be consid-
ered geometrically as a projective plane curve C, and so the problem of determining
the integral zeros of p(x) is equivalent to finding the rational points of C, a problem
of fundamental interest in arithmetic geometry. The general expectation in these
problems is that such polynomials should have few primitive integral zeros other
than the “obvious” ones. By way of illustration, Wiles [81] has resolved Fermat’s
notorious conjecture by completing a program of investigation to show that when
n ≥ 3, the equation xn+yn = zn has only the “obvious” integral solutions satisfying
xyz = 0. In a more general setting, and somewhat earlier, Faltings [29] resolved
Mordell’s Conjecture by showing that when the curve C defined above has genus
exceeding 1, then C has at most finitely many rational points, whence the underly-
ing equation has only finitely many primitive integral solutions. In another rather
older direction, when f(x, y) ∈ Z[x, y] is a homogeneous polynomial of degree d ≥ 2
and n is a natural number, the investigation of the integral solutions of the Thue
equation f(x, y) = n is fundamental to a whole branch of the theory of diophantine
approximations (see, for example, Schmidt [66]). We spend no more space here
on this class of diophantine problems, but rather direct the reader to browse the
literature wherein papers on this topic proliferate in copious quantities.

(ii) Diophantine problems in many variables. Rather than investigate poly-
nomials which are expected to have few if any integral zeros, one may seek instead
to show that a given polynomial has many primitive integral zeros. Consider a
homogeneous polynomial F (x) ∈ Z[x1, . . . , xs] of degree d. It is a remarkable fact
that when d is odd and s is sufficiently large compared to d, there are infinitely
many primitive integral zeros of F (x) (see Birch [8]). In consequence, the philoso-
phy underlying investigations concerning the solubility of diophantine equations in
many variables takes on an entirely different flavour to the work sketched above.
For the purpose of exposition, we characterise two basic problems in this area as
follows.

Problem (a). Existence of solutions. How large must s be in terms of d so that
there exists x ∈ Zs \ {0} such that F (x) = 0?

Problem (b). Density of solutions. How small can κ be in terms of s and d so
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that for each large real number B, one has

card({x ∈ [−B,B]s ∩ Zs : F (x) = 0}) À Bs−κ. (1.1)

Here, as is usual in analytic number theory, we write f(t) À g(t) when for some
positive constant c one has |f(t)/g(t)| > c for all t under consideration. Also, we
write f(t) ¿ g(t) when g(t) À f(t).

Fortified with a mild dose of optimism, one might expect that as soon as s is
sufficiently large in terms of d, the number of zeros counted by the left hand side of
(1.1) should be asymptotic to a suitable product of densities of real solutions and
p-adic solutions. In most situations, the truth of such an expectation would imply
the validity of the lower bound (1.1) with κ = d.

Although we restrict attention in this paper primarily to the problems (a) and
(b) above, we remark that there are natural generalisations of the latter problems to
questions involving inequalities, and the methods described herein can be adapted
(with substantial modification) to handle such questions. Consider, for example,
the following problem.

Problem (c). Small values of polynomials. Consider a homogeneous polynomial
G(x) ∈ R[x1, . . . , xs] of degree d. How large must s be in terms of d so that given
ε > 0, there are infinitely many x ∈ Zs such that |G(x1, . . . , xs)| < ε?

Even the simplest cases of the latter problem appear to be formidably difficult. It
is a beautiful theorem of Schmidt [58] that when G(x) ∈ R[x1, . . . , xs] is a homoge-
neous polynomial of odd degree d, there exists an integer s0(d) such that whenever
s > s0(d) and ε > 0, then there are infinitely many integral solutions of the in-
equality |G(x)| < ε. At present the only explicit estimate available for s0(d) is that
due to Pitman [53] in the special case where d = 3, namely s0(3) ≤ (1314)256 − 2.
Little seems to be known concerning lower bounds on permissible values of s0(d).
For what is known on this and related problems, see Schmidt [63], Baker [6] and
Lewis [47].

2. Some simple constraints and observations

Before embarking for more technical territory, we pause to discuss some obvious
constraints within the problems (a) and (b) above. In keeping with our initial
tack in the introduction, we confine ourselves for the moment to considering single
equations, our observations generalising easily to systems of equations.

(i) Real solubility. Plainly, a definite polynomial such as x2k
1 + · · ·+ x2k

s (k ∈ N)
has only the trivial zero x = 0, no matter how large s may be. On the other hand,
every homogeneous polynomial F (x) ∈ Z[x1, . . . , xs] of odd degree is indefinite, and
necessarily possesses a non-trivial real zero (we leave this as a simple exercise to
the reader). We therefore pay particular attention to polynomials of odd degree
without further apology.

(ii) p-adic solubility. Since a somewhat detailed discussion at this point is useful
in motivating a later argument (see the proof of Theorem 6.2 below), we will be more
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precise temporarily than would otherwise be warranted by present circumstances.
Let d be an integer exceeding 1, let p be a prime number, and write Fp for the field of
p elements. There is a field extension K of Fp of degree d. Let ω1, . . . , ωd be a basis
for K/Fp, and consider the norm form N(x) = NK/Fp

(ω1x1 + · · ·+ωdxd) defined to
be the determinant of the linear transformation in K determined by multiplication
by ω1x1 + · · ·+ ωdxd. When α ∈ Fd

p and α = α1ω1 + · · ·+ αdωd, we write N(α) =
N(α). Plainly N(x) is a polynomial of degree d with Fp-rational coefficients. It is
easily verified, moreover, that whenever α, β ∈ K, one has N(α)N(β) = N(αβ).
Consequently, whenever α ∈ Fd

p \ {0}, and α = α1ω1 + · · ·+ αdωd, then necessarily
one has N(α)N(1/α) = 1, whence N(α) = N(α) 6= 0. So the only zero in Fd

p of
N(x) is the trivial one. Identifying now the polynomial N(x) with a corresponding
polynomial N(x) having integer coefficients, whose reduction modulo p coincides
with N(x) in the obvious sense, it follows that the polynomial

F (x) = N(x1, . . . , xd)+pN(xd+1, . . . , x2d) + . . .

+ pd−1N(xd2−d+1, . . . , xd2) (2.1)
has only the trivial zero x = 0 over Qp. For whenever this polynomial is divisible
by p, it follows from the above argument that p|xi for 1 ≤ i ≤ d. On substituting
and dividing by p, an obvious induction shows that when x is a zero of F (x), then
pr|xi (1 ≤ i ≤ d2) for every r ∈ N. In particular, there exist forms F (x) ∈ Z[x]
of odd degree d in as many as d2 variables which fail to possess non-trivial integral
zeros.

(iii) Hybrid examples. Motivated by an example described by Swinnerton-Dyer,
one may construct hybrid examples less trivial than those above. For example,
Cassels and Guy [18] have shown that the equation 5x3 +12y3− 9z3− 10t3 = 0 has
no non-trivial integral solutions, despite having non-trivial real and p-adic solutions,
for every prime p. Consequently the sextic polynomial

5(x2
1 + · · ·+ x2

s)
3 + 12(y2

1 + · · ·+ y2
s)3

− 9(z2
1 + · · ·+ z2

s)3 − 10(t21 + · · ·+ t2s)
3

has non-trivial real and p-adic zeros, for every prime p, but has no non-trivial
integral zeros, no matter how large s may be.

While problem (b) is considerably more subtle than that concerning the mere
existence of solutions, the discussion of example (ii) above is nonetheless instructive.

(iv) Density of solutions. Suppose that F (x) ∈ Z[x1, . . . , xs] is a homogeneous
polynomial of odd degree d, and suppose that F (x) possesses non-trivial p-adic
zeros for every prime p. One may naively expect that when B is large, as we vary
(x1, . . . , xs) through the box [−B, B]s, one should find that almost every integer in
the convex hull of the set F ([−B, B]s) should receive its fair share of representations.
Given this weak probabilistic heuristic, it is to be expected that for a suitable
positive real number β, one should have

card({x ∈ [−B,B]s ∩ Zs : F (x) = 0})

À card([−B, B]s ∩ Zs)
card([−βBd, βBd] ∩ Z)

À Bs−d. (2.2)
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This lower bound is consistent with the expectation that the number of integral zeros
of F (x) in the box [−B, B]s should be asymptotic to a product of local densities.
However, the above heursitic may be far from the truth when the form F (x) is
degenerate. Consider, for example, any large natural number s, an odd integer d,
and linear polynomials Li(x) ∈ Z[x1, . . . , xs] (1 ≤ i ≤ d2) linearly independent over
Q. Recalling the example (2.1) above, we define

G(x) = F (L1(x), . . . , Ld2(x)).

Then by the argument of example (ii), it follows that whenever G(x) = 0 one
necessarily has Li(x) = 0 (1 ≤ i ≤ d2), and hence the linear independence of the
Li(x) forces us to conclude that

card({x ∈ [−B, B]s ∩ Zs : G(x) = 0}) ¿ Bs−d2
.

We stress that such is the case no matter how large s may be, and when d > 1 this
estimate sharply contradicts the lower bound (2.2).

We remark that in the current state of knowledge, it remains possible that the
following conjecture is true.

Conjecture. Let s and d be natural numbers with d odd and s > d2. Suppose that
F (x) ∈ Z[x1, . . . , xs] is a homogeneous polynomial of degree d. Then when B is
large, one has

card({x ∈ [−B, B]s ∩ Zs : F (x) = 0}) À Bs−d2
.

Similarly, let s and d1, . . . , dr be natural numbers with di odd (1 ≤ i ≤ r) and
s > d2

1 + · · ·+ d2
r. Suppose that Fi(x) ∈ Z[x1, . . . , xs] (1 ≤ i ≤ r) is a homogeneous

polynomial of degree di (1 ≤ i ≤ r). Then one might conjecture that

card({x ∈ [−B, B]s ∩ Zs : F1(x) = . . . = Fr(x) = 0})
À Bs−d2

1−···−d2
r .

3. Approaches to these problems

Except in a few isolated instances, we currently have only two approaches to
the problems (a) and (b) above which are guaranteed to achieve some measure
of success. While methods from arithmetic geometry and ergodic theory are ap-
plicable to special examples (see, for example, Batyrev and Manin [7], Lang [38]
and Duke, Rudnick and Sarnak [28]), the applicability of such methods requires
detailed knowledge of the geometry and algebraic structure of the examples under
consideration. In contrast, the methods we highlight herein are applicable in con-
siderable generality, and make use of only the weakest properties of the underlying
polynomials.
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(i) Elementary diagonalisation methods. There is a vast body of knowledge
available concerning the solubility of additive diophantine equations of the shape

a1y
k
1 + · · ·+ aty

k
t = 0, (3.1)

where the ai are fixed integers (see, for example, Vaughan [79] and Davenport
[22]). Owing to their diagonal structure, such equations are particularly amenable
to methods involving exponential sums and the Hardy-Littlewood method. Thus,
given a homogeneous polynomial F (x) ∈ Z[x1, . . . , xs] of odd degree d, one may
attempt an attack on problem (a) by seeking linear polynomials Li(y) = ai1y1 +
· · · + aityt (1 ≤ i ≤ s) with aij ∈ Z (1 ≤ i ≤ s, 1 ≤ j ≤ t), satisfying the property
that the equation

F (L1(y), . . . , Ls(y)) = 0

takes the shape (3.1). Since polynomials of degree exceeding 2 do not, in general,
diagonalise under a non-singular substitution, one expects that s need be much
larger than t in order that this strategy should stand a chance of success. This
approach has been successfully exploited by Brauer [14] and Birch [8] to establish
two remarkable theorems about which we will say much more in due course.

Theorem 3.1 (Brauer). Let d be a natural number. Then there is a number s1(d)
such that whenever p is a prime number and s > s1(d), and F (x) ∈ Qp[x1, . . . , xs]
is homogeneous of degree d, then the equation F (x) = 0 possesses a solution x ∈
Qs

p \ {0}.
Theorem 3.2 (Birch). Let d be an odd integer. Then there is a number s2(d)
such that whenever s > s2(d) and F (x) ∈ Q[x1, . . . , xs] is homogeneous of degree d,
then it follows that the equation F (x) = 0 possesses a solution x ∈ Qs \ {0}.

While these theorems in some sense provide a solution of problem (a) above,
neither Brauer nor Birch explicitly computed the dependence of s1(d) and s2(d)
on d, and with good reason! The arguments used in establishing these theorems
involve complicated inductions which lead to bounds so large that they are aptly
described by Birch’s sarcastic phrase “not even astronomical”.

(ii) The Hardy-Littlewood method. Various versions of the Hardy-Littlewood
method have been developed in order to discuss the problems (a) and (b) above. All
of these versions have rather serious limitations which restrict their use somewhat,
and thus we will avoid describing such methods in detail within this paper. Two
results typify the kind of conclusions available within this circle of ideas.

Theorem 3.3 (Birch). Let F (x) ∈ Z[x1, . . . , xs] be homogeneous of degree d, and
suppose that the variety defined by the equation F (x) = 0 has a singular locus of
dimension at most D. Then whenever s−D > (d− 1)2d, one has

card({x ∈ [−B,B]s ∩ Zs : F (x) = 0}) ∼ CBs−d,

where C denotes the “product of local densities” within the box [−B, B]s.

Here, in order to save space, we avoid explaining precisely what “product of local
densities” means, and instead note merely that this number is positive and uniformly
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bounded away from 0 whenever the equation F (x) = 0 possesses non-singular real
and p-adic solutions for every prime p. In such a situation, it follows from Birch’s
Theorem that the equation F (x) = 0 possesses infinitely many primitive integral
solutions. The difficulty in applying this result of Birch [10] to resolve the problem
(a) satisfactorily lies in our failure to adequately understand singular loci. It seems
likely that whenever a variety defined as the set of zeros of a polynomial F (x)
possesses a singular locus of extremely large dimension, then necessarily that locus
contains a subvariety defined by a system of rational equations of small degree. If
such were known, then one could apply an inductive procedure in order to infer
the existence of non-trivial integral solutions. Presently, however, we do not even
understand the singular loci of cubic polynomials in any generality.

There is a second rather general approach due to Schmidt [65]. In order to
describe this method, we require some notation. When F (x) ∈ Q[x1, . . . , xs] is a
form of degree d > 1, write h(F ) for the least number h such that F may be written
in the form

F = A1B1 + A2B2 + · · ·+ AhBh,

with Ai, Bi forms in Q[x] of positive degree (1 ≤ i ≤ h). There is an analogous
concept for systems of forms which we avoid describing in the interest of saving
space.

Theorem 3.4 (Schmidt). Let d be an integer exceeding 1, and write χ(d) =
d224dd!. Let F (x) ∈ Z[x1, . . . , xs] be homogeneous of degree d, and suppose that
h(F ) ≥ χ(d). Then one has

card({x ∈ [−B,B]s ∩ Zs : F (x) = 0}) ∼ CBs−d,

where C denotes the “product of local densities” within the box [−B, B]s.

While the integer h(F ) associated with a form F may be difficult to compute for
a specific example, Schmidt’s approach has the advantage of leading naturally to
an inductive strategy for solving an equation. For suppose that the form F (x) ∈
Z[x1, . . . , xs] has odd degree d, and possesses non-singular real and p-adic solutions
for every prime p. Then if h(F ) ≥ d224dd!, it follows from Theorem 3.4 that the
equation F (x) = 0 possesses infinitely many primitive integral solutions. Otherwise
we may write

F (x) = A1(x)B1(x) + · · ·+ Ah(x)Bh(x)

with h < d224dd!, and with A1(x), . . . , Ah(x) ∈ Z[x] homogeneous of odd degree at
most d−2. Thus, provided that we can solve the system Ai(x) = 0 (1 ≤ i ≤ h), then
again we obtain a non-trivial integral solution of the equation F (x) = 0. Moreover,
all of the equations occurring in the latter system have degree smaller than that of
F (x). We may now, therefore, apply the analogue of Theorem 3.4 for systems of
polynomials, and with sufficiently many variables we will either solve the system,
or again reduce the degrees of the equations occurring therein. Unfortunately,
the number of variables required to establish the existence of solutions using this
approach is “not even astronomical” in size, and indeed Birch’s elementary approach
may be fashioned to do better in this respect.



56 TOPICS IN NUMBER THEORY

For more restricted variants of the Hardy-Littlewood method applicable to the
solubility of systems of equations in many variables, see also Tartakovsky [76],
Davenport [20], [21], [23], Pleasants [54], Schmidt [62], Heath-Brown [33], Hooley
[34], [35], [36], Skinner [73], [75] and Vaughan and Wooley [80].

4. Some notation

In order to navigate further our discussion of the problem (a), we require some
notation. Despite the unpleasant appearance of this notation, it is best simply to
introduce it in the most general form in one clean sweep.

Definition 4.1. Given an r-tuple of polynomials

F = (F1, . . . , Fr)

with coefficients in a field k, denote by ν(F) the number of variables appearing
explicitly in F.

We are interested in solution sets, over a field k, of systems of homogeneous
polynomial equations with coefficients in k. When such a set contains a linear
subspace of the ambient space, we define its dimension to be that when considered
as a projective space.

Definition 4.2. Let k be a field. Denote by G(m)
d (rd, . . . , r1; k) the set of (rd + · · ·+

r1)-tuples of homogeneous polynomials, of which ri have degree i for 1 ≤ i ≤ d, with
coefficients in k, which possess no linear space of solutions of dimension m over k.
We define V

(m)
d (r) = V

(m)
d (rd, . . . , r1; k) by

V
(m)
d (rd, . . . , r1; k) = sup

h∈G(m)
d (rd,...,r1;k)

ν(h).

We abbreviate V
(m)
d (r, 0, . . . , 0; k) to v

(m)
d,r (k), and similarly v

(0)
d,r(k) to vd,r(k), and

v
(m)
d,1 (k) to v

(m)
d (k), and v

(0)
d (k) to vd(k).

Notice that this definition simply tells us how many variables we require in order
to solve an arbitrary implicit system of equations.

Examples.

(i). We have v1,r(k) = r, by familiar linear algebra. In other words, in any field
k a system of r linear forms with k-rational coefficients, in r + 1 or more variables,
necessarily possesses a non-trivial k-rational solution. Moreover, there exist systems
of r linear forms in r variables which possess only trivial solutions.

(ii). For any prime number p, it follows from the classical theory of quadratic
forms that v2(Qp) = 4. In other words, any quadratic form with p-adic coefficients
in 5 or more variables possesses a non-trivial p-adic solution. Moreover, in view of
examples of the type (2.1) above, there are quadratic forms in 4 variables which
possess only the trivial p-adic solution.
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(iii). We have v2(Q) = +∞, because any definite quadratic form has only the
trivial zero over Q, no matter how many variables it might have.

The simplest forms of degree d to investigate are diagonal forms of the shape

a1x
d
1 + · · ·+ asx

d
s . (4.1)

Definition 4.3. When k is a field, denote by Dd,r(k) the set of r-tuples of diagonal
forms of degree d, with coefficents in a field k, which possess no non-trivial zeros
over k. Define

φd,r(k) = sup
f∈Dd,r(k)

ν(f).

We abbreviate φd,1(k) to φd(k).

Note that whenever s > φd(k) and ai ∈ k (1 ≤ i ≤ s), then the polynomial (4.1)
possesses a non-trivial k-rational zero.

5. Brauer’s method

Equipped with the notation of the previous section, we may restate a quite
general version of problem (a) as follows.

Problem (A). Existence of solutions. Given a field k, a natural number d, and
non-negative integers r1, . . . , rd and m, find an upper bound for V

(m)
d (rd, . . . , r1; k).

The methods of Brauer [14] alluded to above in connection with Theorem 3.1
may be applied to provide an elegantly simple solution of problem (A).

Theorem 5.1 (Brauer). Let k be a field, and suppose that for i ≥ 2 one has
φi(k) < ∞. Then for each natural number d and for all non-negative integers
r1, . . . , rd and m, one has

V
(m)
d (rd, . . . , r1; k) < ∞.

It has been known since at least the early part of this century that for every
prime number p one has φd(Qp) < ∞, and thus we see that Theorem 3.1 is an
immediate corollary of Theorem 5.1. Unfortunately, since φt(Q) = +∞ whenever t
is even, Theorem 5.1 does not yield insight into bounds for vd(Q).

As indicated in §3, the method of proof of Theorem 5.1 is a complicated induction,
so highly iterative that for decades it was thought that any explicit estimate arising
from such methods would surely be too large to be sensibly written down. It was
therefore a surpise when Leep and Schmidt [42] were able to obtain a “reasonable”
bound by employing a clever variant of Brauer’s original method. When p is a
prime number and k = Qp, the conclusions of Leep and Schmidt [42] may be stated
reasonably cleanly as follows.

Theorem 5.2 (Leep and Schmidt). Let p be a prime number, and let d be a
natural number. Then for each positive number ε, one has

vd(Qp) ¿ε e(d!)2(1+ε)d

.
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Further, when r is a natural number,

vd,r(Qp) ≤
(v2

2

)(v3

2

)2

. . .
(vd

2

)2d−2

r2d−1 (
1 + O(r−1)

)
.

We will return momentarily to the topic of explicit versions of Brauer’s Theorem.
In order to better explain the ideas involved in subsequent developments, however,
it seems appropriate at this stage to sketch a proof of Theorem 5.1. Let k be a
field, and suppose that φi(k) < ∞ for i ≥ 2. When D ≥ 1, we form the inductive
hypothesis that for all non-negative integers rD, . . . , r1 and m, one has

V
(m)
D (rD, . . . , r1; k) < ∞. (5.1)

The hypothesis (5.1) is immediate from linear algebra when D = 1. We suppose
that d ≥ 2 and that (5.1) holds for all m and r when D = d − 1, and then aim to
establish (5.1) for all m and r when D = d.

We start with some simplifications, observing first that for all m and r, one has

V
(m)
d (rd, . . . , r1; k) ≤ v

(v)
d,rd

(k), (5.2)

where v = V
(m)
d−1 (rd−1, . . . , r1; k). For given any system of rj forms of degree j

(1 ≤ j ≤ d) in more than v
(v)
d,rd

(k) variables, the subsystem of rd forms of degree
d possesses a v-dimensional linear space of k-rational zeros. Writing down a basis
for this linear space, and substituting into the remaining forms, we obtain a system
of ri forms of degree i (1 ≤ i ≤ d − 1) in v + 1 variables, and by the definition of
V

(m)
d−1 (r; k), this system possesses an m-dimensional linear space of k-rational zeros.

The upper bound (5.2) is immediate. Moreover, a similar argument shows that
whenever r ≥ 2, one has

v
(m)
d,r (k) ≤ v

(w)
d (k), (5.3)

where w = v
(m)
d,r−1(k). We therefore deduce that in order to establish (5.1), it suffices

to show that v
(m)
d (k) < ∞ for each m.

Next we indicate how to diagonalise a form. We claim that for each natural
number t, there is an integer n(t), depending at most on k and t, such that whenever
s > n(t) and F (x) ∈ k[x1, . . . , xs] is a form of degree d, then there exist linearly
independent k-rational points y1, . . . ,yt with the property that for every z1, . . . , zt

in k one has
F (z1y1 + · · ·+ ztyt) = F (y1)zd

1 + · · ·+ F (yt)zd
t . (5.4)

In other words, the polynomial F (x) may be reduced non-trivially to a diagonal
form in at least t variables. When t = 1 this claim is trivial, so we suppose that
t ≥ 1 and that y1, . . . ,yt satisfy (5.4). Write u = z1y1 + · · · + ztyt, and consider
a point v ∈ ks linearly independent of y1, . . . ,yt. Then for every t and w in k one
has

F (tu + wv) = tdF (u) + wdF (v) +
d−1∑

i=1

tiwd−iGi(u,v), (5.5)
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where the polynomials Gi(u,v) ∈ k[u,v] are homogeneous of degree i in terms
of u, and of degree d − i in terms of v. When t = 1, so that u = z1y1, the
system of equations Gi(u,v) = 0 (1 ≤ i ≤ d − 1) is equivalent to a system of
homogeneous equations in v of respective degrees 1, 2, . . . , d− 1. On recalling that
we are choosing v to be linearly independent of y1, it follows that whenever s−1 >

V
(0)
d−1(1, 1, . . . , 1; k), then the latter system possesses a non-trivial k-rational solution.

From (5.5) we therefore deduce that the polynomial F (x) may be reduced non-
trivially to a diagonal form in at least t + 1 variables. When t > 1, we may
adopt a similar strategy, examining separately the coefficients of each term of the
shape zi1

1 . . . zit
t , although we emphasise that the number of equations needing to be

solved will increase with t. Thus it follows that whenever both n(t) and V
(0)
d−1(r; k)

are finite, for each r, then one has that n(t + 1) is finite. Our claim that n(t) < ∞
for each t therefore follows by induction.

Consider next a form F (x) ∈ k[x1, . . . , xs] with s > n(t), where t = (m + 1)ψ
and ψ = φd(k) + 1. By the above argument the polynomial F (x) diagonalises via a
substitution x = z1y1 + · · ·+ ztyt to the shape F (x) = a1z

d
1 + · · ·+ atz

d
t . But the

variables in the latter form may plainly be partitioned into m+1 sets each containing
ψ variables, and moreover, with the diagonal form underlying each set possessing
a non-trivial k-rational zero. Thus it follows that the equation F (x) = 0 has a
k-rational linear space of solutions of dimension m, and hence v

(m)
d (k) ≤ n(t) < ∞.

In view of (5.2) and (5.3), we may conclude that (5.1) holds with D = d, and so
our induction is complete.

A cursory examination reveals that the bounds stemming from the above argu-
ment will involve highly iterated exponential functions of unpleasant type. In order
to establish the respectable bounds embodied in Theorem 5.2, Leep and Schmidt [42]
required three new ingredients. First, an efficient new inductive approach is used
to generate linear spaces of k-rational solutions to systems of equations, thereby
replacing the simplifying bounds (5.2) and (5.3) by ones considerably less wasteful.
The idea is to make use of the existence of a linear space of k-rational solutions, via
a change of variables, in order to simplify the shape of the equations under consid-
eration, and thence make easier the task of finding a larger linear space of k-rational
solutions. By making use of the bound vd,r(k) ≤ v

(w)
d,r−1(k), with w = vd(k), this

idea also enables one to bound v
(m)
d,r (k) simply in terms of vj(k) (1 ≤ j ≤ d). Sec-

ond, Leep and Schmidt diagonalise whole systems of forms simultaneously, rather
than just a single form. Then by making use of estimates of Davenport and Lewis
[25] for φd,r(Qp), Leep and Schmidt are able to remove another of the highly it-
erated inductions from the above argument. Thirdly, and this ingredient should
not be underestimated, Leep and Schmidt were brave enough to push the project
through to completion! By developing further the theory of simultaneous additive
equations, Schmidt [64] was subsequently able to improve the bounds recorded in
Theorem 5.2 somewhat, showing that for every prime p and natural number d, one
has vd(Qp) = o(e2dd!).

The author recently found that the Leep-Schmidt approach to Brauer’s method
could be improved further (see Wooley [84]). The key idea is to generate a linear
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space of k-rational solutions to all but one equation of a system via the Leep-
Schmidt process, and at the same time diagonalise the final equation with little
additional cost. This amputates another of the iterated inductive steps from the
process described above. In addition to providing sharper bounds, this new method
offers greater flexibility in its application than that of Leep and Schmidt, for it
depends only on the theory of a single additive equation. The latter is by now
rather well understood in almost any respectable field. We illustrate the conclusions
stemming from these ideas with the following theorem.

Theorem 5.3 (Wooley). Let m, d and r be non-negative integers with d ≥ 2 and
r ≥ 1. Write φi for φi(k) (2 ≤ i ≤ d). Then whenever k is a field for which φi < ∞
(2 ≤ i ≤ d), one has

v
(m)
d,r (k) ≤ 2(r2φd + mr)2

d−2
d−1∏

i=2

(φi + 1)2
i−2

.

The conclusion of Theorem 5.3 improves on that of Theorem 5.2 whenever φj

is significantly smaller than vj (2 ≤ j ≤ d). Given that we no so much about φj

and little concerning bounds for vj , the reader will anticipate numerous painless
corollaries.

Corollary 1. Let d be an integer with d ≥ 2, and let r be a natural number. Then
for each prime number p one has vd,r(Qp) ≤ (rd2)2

d−1
, and in particular, one has

vd(Qp) ≤ d2d

.

This follows from Theorem 5.3 via the bound φd(Qp) ≤ d2 of Davenport and
Lewis [24].

Corollary 2. Let d be an integer with d ≥ 2, let r be a natural number, and let p
be a prime number. Then whenever K is an algebraic extension of Qp, one has

vd,r(K) ≤ r2d−1
e2d+2(log d)2 .

Whenever one has a system of equations with coefficients from an algebraic ex-
tension of Qp, these coefficients must all lie in some finite extension K ′ of Qp. Thus
Corollary 2 follows from Theorem 5.3 via the bound

φd(K ′) ≤ d((d + 1)max{2 log d/ log p,1} − 1)

of Skinner [74].
It transpires that in purely imaginary field extensions L of Q, the

archimedean local solubility condition is automatically satisfied. Consequently, on
deriving a bound on φd(L) from work of Siegel [71], [72] and Birch [9], we are able
to derive an explicit version of a theorem of Peck [52].

Corollary 3. Let d be an integer with d ≥ 2, let r be a natural number, and let L

be a purely imaginary field extension of Q. Then vd,r(L) ≤ r2d−1
e2dd.

The situation in which Brauer’s methods may be expected to be most effective
is that in which equations of the shape axd + byd = 0 necessarily possess non-trivial
solutions. This brings us to the topic of radical solutions of polynomials, an area
distinguished since Medieval times and invigorated by the celebrated work of Galois.
Such a topic deserves a digression to itself.
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6. Solving equations in solvable extensions

Consider a countable field k of characteristic zero, such as Q. We remark that
these hypotheses are more a matter of convenience than an essential requirement,
the corresponding theory in positive characteristic containing several technical com-
plications. We define the radical closure krad of k as follows. Let k denote the
algebraic closure of k. Also, let S denote the set of all elements α of k for which
the field extension k(α)/k is solvable. Since k is countable, so too must be S, so
that we may write S = {α1, α2, . . . }. We then define

krad =
∞⋃

n=1

k(α1, . . . , αn).

The reader will readily verify that krad satisfies all of the axioms for a field, and
moreover, whenever α ∈ krad one has that k(α) is a solvable extension of k, whence
α is radical.

The classical theory of equations shows that polynomial equations of the shape

f(x) = xn + a1x
n−1 + · · ·+ an = 0 (6.1)

are solvable over krad when n = 2, 3, 4. Meanwhile, a celebrated consequence of
Galois theory shows that when k = Q, for each n with n ≥ 5 such equations exist
with no radical solutions (the only solutions are “irradical”). By homogenising the
equation (6.1), therefore, we find that for every countable field k one has vd(krad) =
1 when d = 2, 3, 4, but that vd(Qrad) ≥ 2 whenever d ≥ 5. This classical problem
naturally leads one, therefore, to consider upper bounds for vd(krad) in general.
Since, when a, b ∈ krad, the equation axd+byd = 0 is always soluble with x, y ∈ krad,
we have φd(krad) = 1 for every natural number d. Then as a corollary of Theorem
5.3 we have the following (see Wooley [84]).

Theorem 6.1 (Wooley). Let k be a countable field of characteristic zero, and let
d and r be natural numbers with d ≥ 2. Then vd,r(krad) ≤ (2r2)2

d−2
.

Fixing attention temporarily on the most familiar case where k = Q, one may
ask whether vd(Qrad) can be arbitrarily large as d grows. In Wooley [84] we show
that for infinitely many integers d one has vd(Qrad) ≥ d

log 2
log 5 , answering the latter

question in the affirmative. But one may, in fact, provide a still larger lower bound
for vd(Qrad) by use of an example motivated by §2(ii). For background on the
necessary Galois theory, see either Garling [30] or Serre [70].

Theorem 6.2. When d = 2, 3, or 4 one has vd(Qrad) = 1. But when d is a natural
number with d ≥ 5, one has vd(Qrad) ≥ d.

Proof. We have already discussed the first assertion of the theorem. Suppose next
that d is an integer with d ≥ 5, and consider the polynomial fd(x) = xd − x − 1.
By Selmer [69], the polynomial fd(x) is irreducible over Q. Let K be the splitting
field of fd(x) over Q. Then according to the remarks on p.42 of Serre [70], one
can show that the field extension K/Q has Galois group Γ isomorphic to the full
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symmetric group Sd. Since the group Sd is not solvable for d ≥ 5, it follows that
the polynomial fd(x) cannot be solved by radical extensions. We note also that
[K : Q] = d!.

Our next step is to show that fd(x) is irreducible over Qrad. Suppose that fd(x)
factors over Qrad in the form

fd(x) = g1(x)g2(x) . . . gt(x), (6.2)

where the gi(x) are monic polynomials irreducible in Qrad[x] of degree di (1 ≤ i ≤ t).
Let L0 denote the field extension of Q obtained by adjoining the coefficients of the
gi (1 ≤ i ≤ t). Since each gi(x) splits over K, it follows that L0 is contained
in K. Consider the Galois group Γ0 of the field extension L0/Q. Let σ be an
automorphism in Γ0, and consider its action on the polynomial gi(x). That is,
consider the polynomial gσ

i (x) obtained by replacing the coefficients of gi(x) by their
images under σ. Since fd(x) is invariant under the action of σ, it follows that gσ

i (x)
divides fd(x). Consequently, one has that gσ

i (x) divides fd(x) for every σ ∈ Γ0, and
for each i with 1 ≤ i ≤ t. But L0 is the minimal field extension of Q containing the
coefficients of the gi, so for each σ ∈ Γ0 other than the trivial automorphism, there is
at least one gi which is moved under the action of σ. It follows that Γ0 is determined
by its action on the gi (1 ≤ i ≤ t), whence it is isomorphic to some subgroup of the
group of permutations on t elements. In particular, one has |Γ0| ≤ t!, whence also
[L0 : Q] ≤ t!.

Next observe that if some subset, say {gi1(x), . . . , gin(x)}, is left fixed under the
action of Γ0, then the polynomial

∏n
j=1 gij (x) is also invariant under the action of

Γ0, and hence has rational coefficients. Then it follows from the irreducibility of
fd(x) that n = t, and moreover there is no loss of generality in supposing that each
gi(x) has the same degree. Thus t divides d, and the degree of each gi(x) is equal
to d/t. Furthermore, one cannot have t = d, for then fd(x) splits over the radical
field extension L0 of Q, and yet fd(x) has no radical roots. We now construct a
tower of field extensions

Q ⊆ L0 ⊆ L1 ⊆ · · · ⊆ Lt = K,

as follows. For each i with 0 ≤ i ≤ t − 1 we take Li+1 to be the splitting field of
gi+1(x) over Li. That K = Lt then follows from the factorisation (6.2) together
with our earlier observations concerning the field L0. But we have

[Li+1 : Li] ≤ (deg(gi+1))! = (d/t)! (0 ≤ i ≤ t− 1).

Consequently,

[K : Q] = [K : Lt−1][Lt−1 : Lt−2] . . . [L1 : L0][L0 : Q]

≤ t!((d/t)!)t.

By hypothesis, however, we have also [K : Q] = d!, so that necessarily d! ≤
t!((d/t)!)t. Moreover, our earlier observation ensures that t < d. Since d ≥ 5,
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therefore, we are forced to conclude that t = 1 and hence that the polynomial fd(x)
is irreducible over Qrad.

Since fd(x) is irreducible over Qrad, if θ is a zero of fd(x) in the splitting field
of fd(x) over Qrad, then one has [Qrad(θ) : Qrad] = d. Write M = Qrad(θ), and let
ω1, . . . , ωd be a basis for M/Qrad. Consider the norm form N(x) = NM/Qrad(ω1x1 +
· · · + ωdxd) defined to be the determinant of the linear transformation in M de-
termined by multiplication by ω1x1 + · · · + ωdxd. Plainly N(x) is a polynomial of
degree d with Qrad-rational coefficients. By the same multiplicative property dis-
cussed in §2(ii), moreoever, it follows that for y ∈ (Qrad)d, one has N(y) = 0 only
when y = 0. Thus it follows that vd(Qrad) ≥ d whenever d ≥ 5. This completes the
proof of the theorem.

An inspection of the example constructed in the proof of Theorem 6.2 will reveal
that the underlying polynomial splits over C, and consequently the solution set of
this polynomial is singular. Such is also the case for the example used in establishing
the earlier bound vd(Qrad) ≥ d

log 2
log 5 of Wooley [84]. It seems natural to ask for

absolutely irreducible or even non-singular examples.

Problem. Is there a curve defined by an absolutely irreducible homogeneous poly-
nomial p(x) ∈ Qrad[x1, x2, x3] which has no radical points? Further, does such a
curve exist which has no singular points?

To be clear, any homogeneous polynomial p(x) ∈ Z[x1, x2, x3] possessing no
radical zeros has the property that whenever p(x) = 0, then either x = 0, or else
at least one of x1, x2, x3 does not lie in Qrad. The work of Rumely [56] may well be
relevant to this problem.

One might conclude from the discussion thus far that solving in solvable ex-
tensions is a pursuit of wholly artificial nature. Maybe so, but there is at least
one application worthy of mention, and indeed this application seems to be what
prompted Brauer to investigate the solubility of forms in the first place. We recall
the discussion of §3 of Brauer [14]. Let k be a countable field of characteristic zero,
and consider the arbitrary algebraic equation of degree n in one variable given by
(6.1), with ai ∈ k (1 ≤ i ≤ n). Let the zeros of f(x) be ωi (1 ≤ i ≤ n), and when
1 ≤ i ≤ n, denote by θi = θi(u) the polynomial

θi(u) = u0 + u1ωi + · · ·+ un−1ω
n−1
i .

It follows that the θi are roots of an equation

g(x) = xn + b1(u)xn−1 + · · ·+ bn(u) = 0, (6.3)

where the bi are homogeneous polynomials in u0, . . . , un−1 of degree i for 1 ≤ i ≤ n
(this transformation is the classical Tschirnhaus transformation). Since g(x) is
invariant under conjugation, moreover, one finds that each bi(u) has k-rational
coefficients for 1 ≤ i ≤ n. Suppose that for some fixed d with 1 ≤ d ≤ n, one is able
to solve the system of equations

bi(u) = 0 (1 ≤ i ≤ d) (6.4)
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non-trivially over krad. We will sketch below, in fact, an argument which employs
the methods described in §5 which establishes the bound

V
(0)
d (1, 1, . . . , 1; krad) ≤ 22d−1 − 1. (6.5)

Moreover, as is evident from a cursory examination of the underlying arguments,
the latter bound guarantees that when n ≥ 22d−1

, the system (6.4) is soluble non-
trivially over a solvable field extension of k whose degree depends at most on d, and
such that any prime divisor of this degree is also bounded above by d. Thus it is
possible to take u0, . . . , un−1 in a field obtained from the field of rational functions
of a1, . . . , an by adjoining a finite number of radicals. The equation (6.3) then takes
the shape

xn + bd+1x
n−d−1 + · · ·+ bn = 0. (6.6)

By adjoining a further radical, moreover, there is no loss of generality in supposing
that bn = 1. Thus the roots of the equation (6.6) may be considered as algebraic
functions of the n − d − 1 quantities bd+1, bd+2, . . . , bn−1. Since each ωi may be
expressed in terms of θi (1 ≤ i ≤ n), it follows that the solution of the general
equation of nth degree may be expressed in terms of its coefficients, provided we
use radicals and one algebraic function of n− d− 1 variables.

For each natural number n, let ln denote the smallest integer l with the property
that the roots of the general equation of degree n may be expressed in terms of
the coefficients by means of algebraic functions of at most l parameters. Then the
discussion above shows that ln ≤ n− d− 1 whenever n ≥ 22d−1

. Consequently, we
have the following theorem.

Theorem 6.3. Let n and d be natural numbers with n ≥ d ≥ 2. Then ln ≤ n− d

whenever n ≥ 22d−2
, and in particular

ln ≤ n− 2−
[
log((log n)/(log 2))

log 2

]
.

Proof. We start by establishing the promised bound (6.5). We note that φd(krad) =
1 for every natural number d, and in order to save effort, we observe that the bound
(2.12) of Wooley [84] asserts in particular that

v
(1)
d,1(k

rad) ≤ 1 + V
(0)
d (1, 1, . . . , 1; krad).

Since the bound established for v
(1)
d,1(k

rad) in the proof of Theorem 2.4 of Wooley
[84] is derived directly from the latter inequality, we may conclude from the proof
of Theorem 2.4 of Wooley [84] that

1 + V
(0)
d (1, 1, . . . , 1; krad)

≤ 2(φd(krad) + 1)2
d−2

d−1∏

i=2

(
φi(krad) + 1

)2i−2

≤ 22d−1
.
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The upper bound (6.5) is immediate, and the theorem then follows in the manner
indicated above.

As far as we are aware, Theorem 6.3 provides the first explicit estimate for ln as
n grows. Brauer [14] had shown that limn→∞(n− ln) = ∞, and previously Hilbert
had shown that ln ≤ n − 4 for n ≥ 5, and ln ≤ n − 5 for n ≥ 9, and Segre [68]
established that ln ≤ n− 6 for n ≥ 157. While Theorem 6.3 shows that ln ≤ n− d

for n ≥ 22d−2
, it would not be surprising if the lower bound on n in the latter could

be replaced by a bound polynomial in d.

7. The truth in local fields

Having discussed upper bounds for vd,r(Qp) at some length, it seems appropriate
next to discuss lower bounds for the latter quantity, and this permits us to recount
one of those epic tales in number theory of Homeric dimensions. We take as our
starting point a conjecture of Artin dating from 1936 (see Artin [4, p.x]), usually
stated in a form equivalent to the following.

Conjecture (Artin). For any prime p, whenever d and ri (1 ≤ i ≤ d) are integers
with d ≥ 2, one has

V
(0)
d (rd, . . . , r1;Qp) = r1 + 4r2 + · · ·+ d2rd. (7.1)

In particular, one has vd(Qp) = d2.

In order to establish Artin’s Conjecture it suffices to show that vd(Qp) = d2 for
each d and each prime p; see Lang [37] and Nagata [51] for details. That

V
(0)
d (rd, . . . , r1;Qp) ≥ r1 + 4r2 + · · ·+ d2rd

follows on considering systems of forms of the shape (2.1) discussed in §2(ii), and
so the content of Artin’s Conjecture lies in the upper bound implicit in (7.1). The
evidence in favour of Artin’s Conjecture was always weak, but not inconsequential.
The classical theory of quadratic forms shows that v2(Qp) = 4 for every prime p
(see Hasse [32]). In the middle of this century, Demyanov [26] (when p 6= 3) and
Lewis [44] tackled cubic forms, showing that for every prime p one has v3(Qp) = 9,
and subsequently Demyanov [27] considered pairs of quadratic forms, establishing
that v2,2(Qp) = 8 for each prime p (see also the treatment of Birch, Lewis and
Murphy [13]). Although Artin’s Conjecture has never been established in any other
instances, strong evidence in its favour has been derived from a number of partial
results. Firstly, it was shown by Birch and Lewis [11] and Laxton and Lewis [40],
that when d = 5, 7 or 11, there is a positive number p0(d) with the property that
whenever p > p0(d), one has vd(Qp) = d2. The arguments used to derive these
conclusions make essential use of the Lang-Weil theorem (see Lang and Weil [39]),
and thus while no explicit estimate for permissible p0(d) is provided by these au-
thors, there is in principle no barrier to providing such (see Leep and Yeomans
[43], where it is shown that p0(5) = 43 is permissible). Moreover, a crucial observa-
tion concerning certain factorisations of polynomials dictates that such methods are
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successful only when d is a prime number not exceeding 11. Also, it follows from
Birch and Lewis [12], together with a correction and refinement of Schuur [67], that
v2,3(Qp) = 12 for p > 7.

Given the limitations of the above direct approaches to Artin’s Conjecture, it
is impressive that Ax and Kochen [5], by employing methods from Mathematical
Logic, were able to show that Artin’s Conjecture is very nearly true in general.

Theorem 7.1 (Ax and Kochen). For each natural number d, there is a positive
number p0(d), depending at most on d, with the property that whenever p > p0(d)
one has vd(Qp) = d2. More generally, when d and r1, . . . , rd are integers with d ≥ 2,
there is a positive number p1 = p1(rd, . . . , r1) with the property that whenever p > p1,
one has

Vd(rd, . . . , r1;Qp) = r1 + 4r2 + · · ·+ d2rd.

Unfortunately, the methods of Ax and Kochen do not enable one to calculate
explicit estimates for p0(d) and p1(r), and this remains a problem of great interest.
The best that is known stems from an alternative treatment due to Cohen [19],
which shows that p0(d) is bounded above by some primitive recursive function of
the degree d, with a similar conclusion for p1(r).

The evidence that we have described thus far shows Artin’s Conjecture to be
“nearly” true. But in 1966, Terjanian [77] exhibited a homogeneous quartic poly-
nomial with integral coefficients in 18 variables, which surprisingly failed to possess
a non-trivial 2-adic solution. Since 18 > 42, it follows that Artin’s Conjecture fails
when d = 4. Subsequently, Terjanian [78] showed that v4(Q2) ≥ 20 using another
explicit example (see also Browkin [15]). While this example, and related ones,
showed that Artin’s Conjecture was not quite true, later work of Arkhipov and
Karatsuba [2], motivated by investigations concerning a problem of Hilbert and
Kamke, finally laid a torch to the conjecture. In a sharper form derived more or
less simultaneously by Arkhipov and Karatsuba [3], Lewis and Montgomery [48]
and Brownawell [16], we may reformulate this crushing of Artin’s Conjecture as
follows.

Theorem 7.2 (Arkhipov and Karatsuba; Lewis and Montgomery; Brow-
nawell). When d is a natural number and ε is a positive number, write

ψ(d, ε) = exp
(

d

(log d)(log log d)1+ε

)
.

Then for each prime number p and positive number ε, there are infinitely many
natural numbers d such that vd(Qp) > ψ(d, ε).

In other words, the number of variables required to guarantee p-adic solubility
of a homogeneous equation of degree d may need to be exponentially large in terms
of d. Thus, in a certain sense, Artin’s Conjecture is spectacularly false! A similar
conclusion holds in field extensions of Qp (see Alemu [1]). An immediate corollary of
Theorem 7.2, which we leave as an exercise to the reader, asserts that for each prime
p and positive number ε, and for each natural number r, there are infinitely many
d such that vd,r(Qp) > rψ(d, ε). By only a modest elaboration of the techniques of
Arkhipov and Karatsuba [3], Lewis and Montgomery [48] and Brownawell [16], one
may sharpen the latter bound as follows (see Wooley [84]).
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Theorem 7.3 (Wooley). Let p be a prime number, and define q = q(p) to be 6
when p = 2, and to be p − 1 when p > 2. Further, let αp = (log p)/(6q). There
exist positive numbers d0(ε) and r0(d, ε) with the property that for each ε > 0,
whenever d is an integer divisible by q with d > d0(ε), and r > r0(d, ε), then one
has vd,r(Qp) > re(αp−ε)d.

While the lower bound provided by Theorem 7.3 is larger than that following from
the earlier methods, the significance of this conclusion lies in the extent to which
Artin’s Conjecture may now be said to fail. Thus, while the earlier arguments
generated bad failures of Artin’s Conjecture for a set of exponents d lying in an
exponentially thin set, Theorem 7.3 does so for the prime p for all large exponents
d divisible by p− 1. In particular, bad failures of Artin’s Conjecture are essentially
ubiquitous, and in particular occur for all large even degrees. A second consequence
of the methods used in establishing Theorem 7.3 is a lower bound on the exceptional
primes permitted by the Ax-Kochen theorem. For convenience, we abbreviate the
notation of Theorem 7.1 by writing p∗(rd, d) = p1(rd, 0, . . . , 0).

Theorem 7.4. One has limD→∞ sup1≤d≤D supr∈N
p∗(r,d)

d ≥ 1
30 .

Despite the numerous counter-examples to Artin’s Conjecture described above,
we currently possess none of odd degree. This prompts a conjecture (see Lewis
[47]).

Conjecture. Let p be a prime number. Whenever d is odd and r1, r3, . . . , rd are
non-negative integers with rd ≥ 1, one has

V
(0)
d (rd, 0, rd−2, 0, . . . , 0, r3, 0, r1;Qp) = r1 + 9r3 + · · ·+ d2rd.

In particular, one has vd(Qp) = d2.

Some workers believe this conjecture to be more likely for prime exponents d.

8. Concluding remarks on solubility over the p-adic numbers

Despite discussing at length both upper and lower bounds for vd,r(Qp), we have
neglected a number of topics worthy of investigation. Greater effort has been ex-
pended on bounds for vd,r(Qp) when d is small. Martin [50], improving on earlier
work of Leep [41], has shown that v2,r(Qp) ≤ 2r2 when r is even, and v2,r(Qp) ≤
2r2 +2 when r is odd. Also, Schmidt [59], [60], [61] has applied analytic methods to
establish that for each natural number r one has v3,r(Qp) ≤ 5300r(3r + 1)2. Notice
that the bounds described thus far have all been non-linear in r, and in particular
those from §5 take the shape vd,r(Qp) ¿d r2d−1

when r is large. This raises the
problem of determining the true rate of growth of vd,r(Qp) in terms of r. For all we
know, the following could be true.

Conjecture. For each prime p, and each natural number d, one has
vd,r(Qp) ¿d r.

Finally, we observe that it would be desirable to know that a given system
possesses non-singular p-adic solutions in order to successfully apply the Hardy-
Littlewood method in some generality. For example, suppose that a system of
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equations has a singular locus of very high dimension, but nonetheless possesses
non-singular real and p-adic solutions for every prime p. Then one might hope that
a suitable version of the circle method would establish an asymptotic formula for
the number of rational points, up to a given height, in a neighbourhood away from
the singular points. Unfortunately, the issue of existence of non-singular points is
complicated by degeneracy. In any field k, for example, when s and d are natural
numbers with d > 1, all solutions of the equation (a1x1 + · · · + asxs)d = 0 are
singular. Although we have no space to describe such matters herein, the author
has made some progress on this problem by showing that given sufficiently many
variables in terms of the degree, a form possesses non-singular solutions provided
that it is not badly degenerate. We refer the reader to forthcoming work (Wooley
[86]) for details.

9. Birch’s method

Before discussions of Birch’s method begin in earnest, it is useful to record some
further notation relevant to systems of forms of odd degree. Let k be a field. When
d is an odd number, we abbreviate

V
(m)
d (rd, 0, rd−2, 0, . . . , 0, r3, 0, r1; k)

to
w

(m)
d (rd, rd−2, . . . , r3, r1; k).

Next, when m ≥ 2, we define H(m)
d (r; k) to be the set of r-tuples, (F1, . . . , Fr), of

homogeneous polynomials of degree d, with coefficients in k, for which no linearly
independent k-rational vectors e1, . . . , em exist such that Fi(t1e1 + · · ·+ tmem) is a
diagonal form in t1, . . . , tm for 1 ≤ i ≤ r. We then define w̃

(m)
d (r) = w̃

(m)
d (r; k) by

w̃
(m)
d (r; k) = sup

h∈H(m)
d (r;k)

ν(h).

Further, we adopt the convention that w̃
(1)
d (r; k) = 0. Note that w̃

(m)
d (r; k) is an

increasing function of the arguments m and r. Moreover, when s > w̃
(m)
d (r; k) and

F1, . . . , Fr are homogeneous polynomials of degree d with coefficients in k possessing
s variables, then there exist linearly independent k-rational vectors e1, . . . , em with
the property that Fi(t1e1+· · ·+tmem) is a diagonal form in t1, . . . , tm for 1 ≤ i ≤ r.

The historical sequence of events leading to the first bounds on vd,r(Q), for odd
exponents d, illustrates the diverse nature of the ideas in this area. The interested
reader will find a commentary on such matters provided by the editor of volume 4
of Mathematika. It seems that independently, Lewis, Birch and Davenport more or
less simultaneously showed that a cubic form with rational coefficients in sufficiently
many variables possesses a non-trivial rational solution (it seems that priority runs
in the order indicated).

Lewis [46] observed that if F (x) ∈ Q[x1, . . . , xs] is a cubic form, then it possesses
non-trivial Q-rational zeros provided only that it possesses non-trivial Q(

√−1)-
rational zeros. For suppose that the latter is the case, and that α is a non-trivial
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Q(
√−1)-rational zero. If, under conjugation, this solution remains fixed (considered

as a projective point on the hypersurface defined by F = 0), then this Q(
√−1)-

rational solution is equivalent to a non-trivial Q-rational one. Otherwise, the two
points α and α are distinct, and by Bézout’s theorem, the line passing through
α and α intersects the cubic hypersurface at some new point β. But β is fixed
under conjugation, so again we have a non-trivial Q-rational zero. However, if s is
sufficiently large, then it follows from Peck’s theorem (see Peck [52], or Corollary
3 to Theorem 5.3 above) that F possesses a non-trivial Q(

√−1)-rational zero, and
we are done. What is astonishing about this idea of Lewis is that it generalises to
show that for any number field K, and given any non-negative integers m and r

with r ≥ 1, one has v
(m)
3,r (K) < ∞. Unfortunately, however, the bounds stemming

from such a method are weak, and indeed Lewis did not explicitly calculate a bound
even for v3(Q).

Birch [8] cleverly adapted Brauer’s elementary diagonalisation method, which we
described in §5, in order to handle quite general systems.

Theorem 9.1 (Birch). Let k be a field, and suppose that for each odd natural
number i with i ≥ 3 one has φi(k) < ∞. Then for each odd natural number d, and
for all non-negative integers r1, r3, . . . , rd and m, one has

w
(m)
d (rd, rd−2, . . . , r3, r1; k) < ∞.

Since when j is odd the bound φj(k) < ∞ holds in any algebraic number field
k, as a consequence of Siegel’s version (Siegel [71], [72]) of the Hardy-Littlewood
method, it follows that w

(m)
d (r; k) < ∞ for every number field k. Owing to the

highly iterated nature of the induction leading to Birch’s theorem, however, in
general no explicit bounds were available for w

(m)
d (r; k) until very recently. We will

discuss such matters further, and sketch a proof of Birch’s theorem, later in this
section.

Davenport’s approach to bounding v3(Q) was through the use of the Hardy-
Littlewood method (see, in particular, Davenport [20]). In a remarkable tour de
force which has stimulated much subsequent work, Davenport initially succeeded
in establishing that v3(Q) ≤ 31 (see Davenport [20]), subsequently improving this
bound first to v3(Q) ≤ 28 (see Davenport [21]), and then v3(Q) ≤ 15 (see Daven-
port [23]). The latter bound has never been improved, although in view of the local
condition implicit in the conclusion v3(Qp) = 9 for each prime p, one strongly sus-
pects that v3(Q) = 9 (see Heath-Brown [33] and Hooley [34], [35], [36] for progress
on non-singular cubic forms). In general the circle method is extremely difficult
to apply to higher degree forms, although, as the strength of Davenport’s bound
suggests, a successful treatment should yield impressive consequences.

The solubility of a single cubic form over Q is the simplest problem along these
lines to consider, and regrettably our knowledge extends hardly any further than
this. Pleasants [54] has shown that in any number field K one has v3(K) ≤ 15
(see also Ramanujam [55] and Ryavec [57] for earlier results, and Skinner [73] for
non-singular cubic forms). Schmidt [62] has studied systems of cubic forms via an
impressive technical development of Davenport’s methods. In particular, Schmidt
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obtains the bound v3,2(Q) ≤ 5139, and in general he shows that v3,r(Q) ≤ (10r)5.
In an interesting twist of fate, the emergence of Birch’s quite general methods
(Birch [8]) seems to have obscured Lewis’ work [46] of the same time. In any case,
by employing the latter’s ideas, the author (Wooley [82]) has shown that in any
algebraic extension K of Q (possibly Q itself), one has v3,2(K) ≤ 855. Finally,
Schmidt [65] has shown that as a consequence of the precise version of his Theorem
3.4 above, one may obtain a bound of the shape

v5,r(Q) < A exp(exp(Br)), (9.1)

for suitable positive constants A and B.
Recently the author (Wooley [83], [85]) found that a rather efficient diagonal-

isation procedure could be engineered by exploiting ideas of Lewis and Schulze-
Pillot [49]. So far as estimates for v3,r(Q) are concerned, this refinement of Birch’s
method yields weaker conclusions than those obtained by Schmidt [62]. However,
the methods can be employed in any field k for which bounds are available for
φ3,r(k). Since a simple argument shows that for each natural number r one has
φ3,r(k) + 1 ≤ (φ3(k) + 1)r (see, for example, the argument of the proof of Lemma
10.4 below), it suffices simply to have an upper bound for φ3(k).

Theorem 9.2 (Wooley). Let k be a field, let m and r be non-negative integers
with r ≥ 1, and suppose that φ3,r(k) is finite. Then

v
(m)
3,r (k) ≤ r3(m + 1)5(φ3,r(k) + 1)5.

In particular, one has v
(m)
3,r (k) ≤ r3(m + 1)5(φ3(k) + 1)5r.

The methods described in Wooley [83] are already more effective than those
available hitherto for systems of quintic forms. Thus the bound (9.1) due to Schmidt
[65] may be improved as follows.

Theorem 9.3 (Wooley). Let m and r be non-negative integers with r ≥ 1. Then

v
(m)
5,r (Q) < exp

(
1032((m + 1)r log(3r))κ log(3r(m + 1))

)
,

where κ = log 3430
log 4 = 5.87199 . . . . In particular, v5,r(Q) = o(er6

).

For systems of forms of degree higher than 5, the bounds provided by the methods
of Wooley [83], [85] are embarrassingly weak, but currently such are the only explicit
bounds available in Birch’s theorem. In order to describe these bounds we will
require some notation. Suppose that A is a subset of R and Ψ is a function mapping
A into A. When α is a real number, write [α] for the largest integer not exceeding
α. Then we adopt the notation that whenever x and y are real numbers with x ≥ 1,
then Ψx(y) denotes the real number a[x], were (an)∞n=1 is the sequence defined by
taking a1 = Ψ(y), and ai+1 = Ψ(ai) (i ≥ 1). Finally, when n is a non-negative
integer we define the functions ψ(n)(x) by taking ψ(0)(x) = exp(x), and when n > 0
by putting

ψ(n)(x) = ψ
(n−1)
42 log x(x). (9.2)
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Theorem 9.4 (Wooley). Let d be an odd integer exceeding 5, and let r and m be
non-negative integers with r ≥ 1. Then

v
(m)
d,r (Q) < ψ((d−5)/2)(dr(m + 1)).

More generally, when r1, r3, . . . , rd are non-negative integers with rd ≥ 1, one has

w
(m)
d (rd, . . . , r1;Q) ≤ ψ((d−5)/2)(d(r1 + r3 + · · ·+ rd)(m + 1)).

We note that the number 42 occurring in the definition (9.2) could certainly be
reduced with greater effort, especially for large values of the parameters d, r and
m + 1. However, the level of iteration involved in the function ψ(n) seems difficult
to improve, and in particular present methods seem unable to reduce the function
log x in (9.2) with any function of significantly smaller rate of growth.

We now sketch the basic ideas underlying the proof of Birch’s theorem (Theorem
9.1). Suppose that w

(M)
D (r; k) < ∞ for each odd D with D < d, and for every r

and m. In broad outline we follow the strategy for establishing Brauer’s theorem
as sketched in §5. In particular, it suffices to bound v

(m)
d (k) for odd exponents d,

and such is possible provided that w̃
(m)
d (1; k) < ∞ for each natural number m. We

establish the latter bound by induction on m, noting trivially that w̃
(1)
d (1; k) = 0.

Suppose then that m ≥ 1 and that w̃
(m)
d (1; k) is finite, and write n = w̃

(m)
d (1; k). We

take q to be a natural number sufficiently large in terms of d, n and k, and we take
p to be a natural number sufficiently large in terms of d, n, q and k. Let s = p + q,
and consider a linear subspace U of ks of affine dimension p. We take V to be the
complementary linear space of affine dimension q, so that ks = U⊕V . Let v1, . . . ,vq

be a k-rational basis for V , and consider an arbitrary element v = c1v1+· · ·+cqvq of
V . Also, let u be an arbitrary element of U , and consider a form F (x) ∈ k[x1, . . . , xs]
of odd degree d. Then for every t, w ∈ k,

F (tu + wv) = tdF (u) + wdF (v)+
d−1∑

i=1
i odd

tiwd−iGi(u,v)

+
d−1∑

j=1
j even

tjwd−jHj(u,v), (9.3)

where Gi(u,v) ∈ k[u,v] is a homogeneous polynomial of odd degree i in u and
even degree d− i in v (i = 1, 3, . . . , d− 2), and Hj(u,v) ∈ k[u,v] is a homogeneous
polynomial of odd degree d− j in v and even degree j in u (j = 2, 4, . . . , d− 1). On
examining the coefficient of each term ci1

1 . . . c
iq
q in (9.3), we find that the system of

equations
Gi(u,v) = 0 (i = 1, 3, . . . , d− 2) (9.4)

is satisfied for every v ∈ V provided only that a certain system of equations in u
is satisfied. The latter system consists of homogeneous equations of odd degree at
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most d − 2, say rj of degree j (j = 1, 3, . . . , d − 2), with rj bounded in terms of d

and q for each j. Since we may suppose that dim(U) = p > w
(0)
d−2(r; k), it follows

that the system (9.4) is satisfied for every v ∈ V for some fixed non-trivial u ∈ U .
Consider next the system of equations

Hj(u,v) = 0 (j = 2, 4, . . . , d− 1). (9.5)

Since u is now fixed, this is a system of equations of odd degree at most d− 2 in v,
say with r′j equations of degree j (j = 1, 3, . . . , d − 2). Since we may suppose that

dim(V ) = q > w
(n)
d−2(r

′; k), it follows that the system (9.5) possesses a k-rational

linear space of solutions of affine dimension n+1 > w̃
(m)
d (1; k). But for each solution

v lying in the latter linear space one has, for each t, w ∈ k, that F (tu + wv) =
tdF (u) + wdF (v), and so it follows that the polynomial F (x) may be reduced non-
trivially to a diagonal form in at least m+1 variables, whence w̃

(m+1)
d (1; k) < s < ∞.

Thus it follows that whenever both w̃
(m)
d (1; k) and w

(M)
d−2(r; k) are finite, for each M

and r, then one has that w̃
(m+1)
d (1; k) is finite. Our claim that w̃

(m)
d (1; k) < ∞ for

each m therefore follows by induction.
We conclude by remarking that the above strategy may be improved, firstly

by diagonalising a whole system of equations simultaneously, removing one of the
unpleasant iterated steps suppressed above. Also, and this is an idea whose origins
lie in work of Lewis and Schulze-Pillot [49], one may diagonalise in such a way that
rather than iterating from w̃

(m)
d (1; k) to w̃

(m+1)
d (1; k), as sketched above, one may

instead iterate from w̃
(m)
d (1; k) to w̃

(2m)
d (1; k). Such a procedure plainly has the

potential to dramatically accelerate the diagonalisation process, and it is this idea
which underlies the work of Wooley [83], [85] described above.

10. Birch’s Theorem in algebraic number fields

The only major obstruction to establishing a strong analogue of Theorem 9.4 in
algebraic number fields lies in our lack of knowledge concerning the solubility of
simultaneous additive equations. Thus, while the bound

φd,r(Q) + 1 ≤ 48rd3 log(3rd2) (10.1)

due to Brüdern and Cook [17], or earlier bounds due to Davenport and Lewis
[25], provide a suitable foundation for Birch’s method over Q, we have no strong
analogue of the bound (10.1) when the field Q is replaced by an algebraic number
field. Thus, while there is no difficulty in principle to establishing such bounds,
the significant quantity of work required to establish suitable estimates has thus far
deterred detailed investigations. Such difficulties, moreover, are compounded when
one is interested in bounds independent of the degree of the field extension. Since
there appears to be some interest in this topic, we take the opportunity herein to
conclude our discussion of diophantine problems in many variables by establishing
an explicit version of Birch’s theorem in algebraic number fields, albeit a weak one.

We begin by recalling some technical lemmata from Wooley [83], starting with a
lemma which provides information concerning the number of variables required to
diagonalise a system of forms. In what follows, we denote by k an arbitrary field.
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Lemma 10.1. Let d be an odd integer with d ≥ 3, and let r, n and m be natural
numbers. Then

w̃
(n+m)
d (r; k) ≤ s + w

(M)
d−2(R; k),

where
M = w̃

(n)
d (r; k), s = 1 + w

(N)
d−2(S; k), N = w̃

(m)
d (r; k),

and for 0 ≤ u ≤ (d− 1)/2,

R2u+1 = r

(
s + d− 2u− 2

d− 2u− 1

)
and S2u+1 = r

(
n + d− 2u− 2

d− 2u− 1

)
.

Proof. This is Lemma 2.1 of Wooley [83].

We next bound v
(m)
d,r (k) in terms of w̃

(M)
d (r; k).

Lemma 10.2. Let d be an odd positive number, let r be a natural number, and let
m be a non-negative integer. Then

v
(m)
d,r (k) ≤ w̃

(M)
d (r; k),

where M = (m + 1)(φd,r(k) + 1).

Proof. This is Lemma 2.2 of Wooley [83].

Finally, we provide a bound for w
(m)
d (r; k) in terms of the quantities w

(M)
d−2(r; k)

and v
(m)
d,r (k).

Lemma 10.3. Let d ≥ 3 be an odd positive number, and let r1, r3, . . . , rd be non-
negative integers with rd > 0. Then for each non-negative integer m one has

w
(m)
d (rd, rd−2, . . . , r1; k) ≤ w

(M)
d−2(rd−2, . . . , r1; k),

where M = v
(m)
d,rd

(k).

Proof. This is Lemma 2.3 of Wooley [83].

Henceforth we restrict attention to a fixed algebraic extension K of Q, not neces-
sarily of finite degree, and for the sake of concision, when it is convenient so to do,
we drop explicit mention of this field from our various notations. In order to make
use of Lemma 10.2 in our argument we require an estimate for φd,r(K), and here
we are interested in simple estimates independent of K. The problem of bounding
φd,r(K) is substantially more difficult, in general, than that of bounding φd,r(Q),
in large part because the local solubility problem for systems of forms over K may
be significantly more complicated than the corresponding problem over Q. We cir-
cumvent such issues by employing only estimates of simple type depending on our
knowledge of φd(K).
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Lemma 10.4. Let d be an odd positive number with d ≥ 3, and let r be a natural
number. Then one has φd,r(K) + 1 ≤ e2dr.

Proof. We consider the algebraic extension K of Q. Let s ≥ 2d + 1, and suppose
that b1, . . . , bs ∈ K. Note first that there is a finite extension L of Q with the
property that b1, . . . , bs ∈ L, and moreover that whenever the equation

b1x
d
1 + · · ·+ bsx

d
s = 0 (10.2)

possesses a non-trivial solution in L, then it does so also in K. Next we recall
that by using Siegel’s version of the circle method (see Siegel [71], [72]), Birch [9,
Theorem 3] was able to show that whenever s > 2d, the equation (10.2) has a
non-trivial solution in L provided that it has a non-trivial solution in every real and
p-adic completion of L. The condition that the equation (10.2) be soluble in the real
completion of L is, of course, trivially satisfied when that completion is C. When
that completion is R, meanwhile, the equation (10.2) has a non-trivial solution in
the real completion of L whenever d is odd. On the other hand, when M is a finite
extension of Qp and d is an integer with d ≥ 2, it follows from Skinner [74] that

φd(M) ≤ d
(
(d + 1)max{2 log d/ log p,1} − 1

)
.

Consequently, when d is odd the equation (10.2) is soluble non-trivially over L, and
hence also over K, provided only that

s > max{2d, d((d + 1)max{2 log d/ log p,1} − 1)}. (10.3)

The simple bound φd(K) + 1 ≤ e2d follows from (10.3) with a modicum of compu-
tation.

Next suppose that r > 1, and write m = φd,r−1(K). Suppose that s ≥ (m +
1)(φd(K) + 1), and consider elements bij ∈ K (1 ≤ i ≤ r, 1 ≤ j ≤ s), and the
system of equations

s∑

j=1

bijx
d
j = 0 (1 ≤ i ≤ r). (10.4)

Since m + 1 > φd,r−1(K), it follows that each of the systems

(t+1)(m+1)∑

j=t(m+1)+1

bijx
d
j = 0 (2 ≤ i ≤ r)

has a solution x = (at(m+1)+1, . . . , a(t+1)(m+1)) ∈ Km+1 \ {0} for 0 ≤ t ≤ φd(K).
On substituting

xt(m+1)+j = at(m+1)+jyt (1 ≤ j ≤ m + 1, 0 ≤ t ≤ φd(K)),

we find that the system (10.4) is soluble provided that there is a non-trivial K-
rational solution to the equation

c0y
d
0 + · · ·+ cT yd

T = 0, (10.5)
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where T = φd(K), and

ct =
(t+1)(m+1)∑

j=t(m+1)+1

b1ja
d
t(m+1)+j (0 ≤ t ≤ φd(K)).

But T + 1 > φd(K), and so the equation (10.5) does indeed possess a non-trivial
K-rational solution. We therefore conclude that whenever r > 1, one has

φd,r(K) + 1 ≤ (φd,r−1(K) + 1)(φd(K) + 1),

and hence by induction one obtains φd,r(K) + 1 ≤ (φd(K) + 1)r. On recalling the
conclusion of the previous paragraph, we therefore conclude that φd,r(K)+1 ≤ e2dr.
This completes the proof of the lemma.

Having negotiated the preliminaries, we begin the main body of our investigation,
and make no apology for following closely the argument of Wooley [85]. We start
with bounds for v3,r(K) and v5,r(K), the former quantity being bounded easily by
means of Theorem 9.2 above.

Theorem 10.5. Let m and r be non-negative integers with r ≥ 1. Then one has

v
(m)
3,r (K) ≤ (m + 1)5r3310r.

Proof. Since it is readily available from the literature, we make use of a sharper
bound for φ3,r(K) than is immediately available from Lemma 10.4. By Lewis [45],
it follows that for any algebraic extension Kp of Qp, one has φ3(Kp) ≤ 6. Conse-
quently, the argument of the proof of Lemma 10.4 shows that

φ3(K) + 1 ≤ max{7, 23 + 1} = 9,

whence φ3,r(K) + 1 ≤ 9r. On substituting the latter bound into the conclusion of
Theorem 9.2, the desired conclusion is immediate.

We require a simplification of Theorem 10.5 of use in our main inductive process,
and for this purpose the following lemma suffices.

Lemma 10.6. Suppose that r3, r1 and m are non-negative integers with r1 < 3r2
3.

Then
w

(m)
3 (r3, r1;K) < exp(21r3(m + 1)).

Proof. Whenever r1 < 3r2
3, one finds by elimination of the implicit linear equations

that
w

(m)
3 (r3, r1) = r1 + v

(m)
3,r3

< 3r2
3 + (m + 1)5r3

33
10r3 ,

and a modest calculation therefore leads to the desired conclusion.

We must now dispose of systems of quintic forms, beginning with the diagonali-
sation process.
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Lemma 10.7. Suppose that m and r are natural numbers. Then

w̃
(m)
5 (r;K) < exp5 log(5m)(5rm).

Proof. When m and r are natural numbers, write

w
(m)
5 (r) = exp5 log(5m)(5rm). (10.6)

We aim to show that for each R and M one has

w̃
(M)
5 (R) < w

(M)
5 (R), (10.7)

and from this the conclusion of the lemma is immediate. Note that by definition,
for each natural number R one has w̃

(1)
5 (R) = 0, so that (10.7) certainly holds when

M = 1. Next suppose that m > 1, and that for each R the inequality (10.7) holds
whenever M < m. We will establish that (10.7) holds for each R when M = m,
whence (10.7) follows for all R and M by induction.

Let m and r be natual numbers with m ≥ 2. Write n = [(m + 1)/2], and note
that n < m. By Lemma 10.1 one has

w̃
(m)
5 (r) ≤ w̃

(2n)
5 (r) ≤ s + w

(N)
3 (R), (10.8)

where
N = w̃

(n)
5 (r), s = 1 + w

(N)
3 (S), (10.9)

and for 0 ≤ u ≤ 2,

R2u+1 = r

(
s + 3− 2u

4− 2u

)
and S2u+1 = r

(
n + 3− 2u

4− 2u

)
.

We first bound s. Write N = [w(n)
5 (r)], and note that since n < m, the inductive

hypothesis shows that N ≤ N . Note also that for 0 ≤ u ≤ 2 one has S2u+1 ≤
rn4−2u. Then the hypotheses required for the application of Lemma 10.6 to bound
w

(N)
3 (S) are satisfied, and we may conclude from (10.9) that

s ≤ 1 + w
(N)
3 (rn2, rn4) ≤ w

(N)
3 (rn2, 2rn4),

whence
s < exp(21rn2(N + 1)). (10.10)

But by (10.6) one has

N ≤ w
(n)
5 (r) = exp5 log(5n)(5rn) (10.11)

and
N = [exp5 log(5n)(5rn)] ≥ 5rn. (10.12)
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Also, plainly, for each m ≥ 2 it follows from (10.6) that N ≥ exp5(5). Then by
combining (10.10) and (10.12), we obtain

s ≤ exp((N + 1)3) < exp(N
4
). (10.13)

Finally we bound w̃
(m)
5 (r) by substituting (10.13) into (10.8). Note that for 0 ≤

u ≤ 2 one has R2u+1 ≤ rs4−2u. Then the hypotheses required for the application
of Lemma 10.6 to bound w

(N)
3 (R) are satisfied, and we may conclude that

w̃
(m)
5 (r) ≤ s + w

(N)
3 (rs2, rs4) ≤ w

(N)
3 (rs2, 2rs4),

whence
w̃

(m)
5 (r) < exp(21rs2(N + 1)).

Write s = exp(N
4
). Then by (10.12) and (10.13), one has

w̃
(m)
5 (r) < exp((s(N + 1))3) ≤ exp(s6) = exp2(6N

4
) < exp2(N

5
).

We therefore deduce from (10.11) that

w̃
(m)
5 (r) < exp3(5 log N) < exp3(exp5 log(5n)−1(5rm)).

But on noting that whenever m ≥ 2 one has[
5 log

(
5

[
m + 1

2

])]
≤ [5 log(5m)− 2] ,

we may conclude from (10.6) that

w̃
(m)
5 (r) < exp5 log(5m)(5rm) = w

(m)
5 (r),

thereby establishing the inequality (10.7) with M = m and R = r. Thus, on
recalling the comments concluding the first paragraph of the proof, the proof of the
lemma is complete.

A bound for v
(m)
5,r (K) follows on substituting the conclusion of Lemma 10.7 into

Lemma 10.2.

Theorem 10.8. Suppose that m and r are non-negative integers with r ≥ 1. Then

v
(m)
5,r (K) < exp67r(m+1)(5r(m + 1)).

Proof. By combining Lemmata 10.2 and 10.4 with Lemma 10.7, one obtains

v
(m)
5,r (K) < exp5 log(5M)(5rM), (10.14)

where M = (m + 1)e10r. But a little calculation reveals that

log(5M) < log(5 exp(10r + (m + 1))) < 13r(m + 1),

and
log(5rM) < 10r + log(5r(m + 1)) < exp(5r(m + 1)),

and hence (10.14) provides the estimate

v
(m)
5,r < exp65r(m+1)+2(5r(m + 1)).

The conclusion of the lemma follows immediately.

We will require a slightly more general conclusion within our main induction.
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Lemma 10.9. Suppose that r1, r3, r5 and m are non-negative integers with r1 ≤
3r2

3 and r3 < 3r2
5. Then

w
(m)
5 (r5, r3, r1) < exp69r5(m+1)(5r5(m + 1)).

Proof. By Lemma 10.3 one has w
(m)
5 (r) ≤ w

(v)
3 (r3, r1), where v = v

(m)
5,r5

. But in view
of the hypotheses concerning r1 and r3, we may apply Lemma 10.6 together with
Theorem 10.8 to conclude that

log w
(m)
5 (r) < 63r2

5

(
1 + exp67r5(m+1)(5r5(m + 1))

)
,

whence
log2 w

(m)
5 (r) < exp67r5(m+1)(5r5(m + 1)).

The desired conclusion is essentially immediate from the latter inequality.

We have now established the basis for our induction. In order to establish the
main inductive step, we require some further notation. We say that the function
Ψ : [1,∞) → [1,∞) satisfies the exponential growth condition if it has derivatives
of all orders on [1,∞), and moreover for each non-negative integer n, one has for
each x ∈ [1,∞) that

dnΨ(x)
dxn

≥ ex.

When D is an integer exceeding 3, we make use of the following hypothesis.

Hypothesis HD(Ψ). For all natural numbers M , and all 1
2 (D + 1)-tuples R =

(RD, RD−2, . . . , R1) of non-negative integers satisfying RD−2 < 3R2
D and Ri ≤

3R2
i+2 (i = 1, 3, . . . , D − 4), one has

w
(M)
D (R) < Ψ(DRD(M + 1)). (10.15)

Fortunately, the diagonalisation process is largely independent of the ambient
field under consideration.

Lemma 10.10. Let d be an odd integer exceeding 5. Suppose that Ψ is a function
satisfying the exponential growth condition, and suppose further that the hypothesis
Hd−2(Ψ) holds. Then whenever m and r are natural numbers, one has

w̃
(m)
d (r) < Ψ5 log(dm)(drm).

Proof. This is essentially Lemma 4.1 of Wooley [85].

On combining Lemma 10.10 with Lemma 10.2, we are able to bound v
(m)
d,r (K) on

the hypothesis Hd−2(Ψ).
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Lemma 10.11. Let d be an odd integer exceeding 5. Suppose that Ψ is a function
satisfying the exponential growth condition, and suppose further that the hypothesis
Hd−2(Ψ) holds. Then whenever m and r are non-negative integers with r ≥ 1, one
has

v
(m)
d,r (K) < Ψ16dr(m+1)(dr(m + 1)).

Proof. On combining Lemmata 10.2 and 10.4 with Lemma 10.10, one obtains

v
(m)
d,r (K) < Ψ5 log(dM)(drM), (10.16)

where M = (m + 1)e2dr. But a modicum of computation reveals that

log(dM) = 2dr + log(d(m + 1)) < 3dr(m + 1),

and

log(drM) = 2dr + log(dr(m + 1)) < 3dr(m + 1) < exp(dr(m + 1)),

and hence (10.16) leads to the upper bound

v
(m)
d,r (K) < Ψ15dr(m+1)+2(dr(m + 1)).

The conclusion of the lemma follows immediately.

In order to complete the main inductive step we must combine the conclusion of
Lemma 10.11 with the hypothesis Hd−2(Ψ) in order to bound w

(m)
d (r; K).

Lemma 10.12. Let d be an odd integer exceeding 5. Suppose that Ψ is a function
satisfying the exponential growth condition, and suppose further that the hypothesis
Hd−2(Ψ) holds. Then whenever r2u+1 (0 ≤ u ≤ 1

2 (d − 1)) and m are non-negative
integers with ri ≤ 3r2

i+2 (i = 1, 3, . . . , d− 4) and rd−2 < 3r2
d, one has

w
(m)
d (r;K) < Ψ17drd(m+1)(drd(m + 1)).

Proof. By Lemma 10.3 one has

w
(m)
d (r) ≤ w

(v)
d−2(rd−2, . . . , r1),

where v = v
(m)
d,rd

. The hypotheses concerning ri for i = 1, 3, . . . , d− 2 permit us the

use of the hypothesis Hd−2(Ψ) in order to bound the quantity w
(v)
d−2(rd−2, . . . , r1),

and thus on employing Lemma 10.11 to bound v, we deduce that

w
(v)
d−2(rd−2, . . . , r1) < Ψ(3(d− 2)r2

d(v + 1))

< Ψ2(2Ψ16drd(m+1)−1(drd(m + 1)))

≤ Ψ16drd(m+1)+2(drd(m + 1)).

The conclusion of the lemma is now immediate.

We have now reached the crescendo of our argument, and this demands further
notation. We define the functions φ(n)(x) by taking φ(0)(x) = exp(x), and when
n > 0 by putting

φ(n)(x) = φ
(n−1)
17x (x). (10.17)
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Theorem 10.13. Let K be an algebraic extension of Q, let d be an odd integer
exceeding 3, and let r and m be non-negative integers with r ≥ 1. Then

v
(m)
d,r (K) < φ((d−3)/2)(dr(m + 1)).

Proof. The conclusion of the theorem is immediate when d = 5, in view of The-
orem 10.8. Note next that by Lemma 10.9, the hypothesis H5(φ(1)) holds, where
φ(1) is defined by (10.17). Moreover φ(1) plainly satisfies the exponential growth
condition. Suppose now that d is an odd integer exceeding 5, and that the hypoth-
esis Hd−2(φ((d−5)/2)) holds. Since plainly φ((d−5)/2) also satisfies the exponential
growth condition, it follows from Lemma 10.12 that the hypothesis Hd(φ((d−3)/2))
holds. We therefore deduce, by induction, that the hypothesis Hd(φ((d−3)/2)) holds
for every odd integer d exceeding 3. Consequently, on applying Lemma 10.11, we
conclude that the inequality

v
(m)
d,r (K) < φ

((d−5)/2)
16dr(m+1)(dr(m + 1)) < φ((d−3)/2)(dr(m + 1))

holds for every odd integer exceeding 3. This completes the proof of the theorem.
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17. J. Brüdern and R. J. Cook, On simultaneous diagonal equations and inequalities, Acta Arith.
62 (1992), 125–149.

18. J. W. S. Cassels and M. J. T. Guy, On the Hasse principle for cubic surfaces, Mathematika
13 (1966), 111–120.



TREVOR D. WOOLEY 81

19. P. J. Cohen, Decision procedures for real and p-adic fields, Comm. Pure Appl. Math. 22
(1969), 131–151.

20. H. Davenport, Cubic forms in thirty-two variables, Philos. Trans. Roy. Soc. London Ser. A
251 (1959), 193–232.

21. H. Davenport, Cubic forms in 29 variables, Proc. Roy. Soc. Ser. A 266 (1962), 287–298.

22. H. Davenport, Analytic methods for Diophantine equations and Diophantine inequalities, Ann
Arbor Publishers, Ann Arbor, 1962.

23. H. Davenport, Cubic forms in 16 variables, Proc. Roy. Soc. Ser. A 272 (1963), 285–303.

24. H. Davenport and D. J. Lewis, Homogeneous additive equations, Proc. Roy. Soc. Ser. A 274
(1963), 443–460.

25. H. Davenport and D. J. Lewis, Simultaneous equations of additive type, Philos. Trans. Roy.
Soc. London Ser. A 264 (1969), 557–595.

26. V. B. Dem’yanov, On cubic forms in discretely normed fields, Dokl. Akad. Nauk SSSR 74
(1950), 889–891. (Russian)

27. V. B. Dem’yanov, Pairs of quadratic forms over a complete field with discrete norm with a
finite field of residue classes, Izv. Akad. Nauk SSSR Ser. Mat. 20 (1956), 307–324. (Russian)

28. W. Duke, Z. Rudnick and P. Sarnak, Density of integer points on affine homogeneous varieties,
Duke. Math. J. 71 (1993), 143–179.

29. G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpen, Invent. Math. 73
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